OPERATOR THEORY ON HILBERT SPACE Class notes
نویسنده
چکیده
منابع مشابه
c-Frames and c-Bessel mappings
The theory of c-frames and c-Bessel mappings are the generalizationsof the theory of frames and Bessel sequences. In this paper, weobtain several equivalent conditions for dual of c-Bessel mappings.We show that for a c-Bessel mapping $f$, a retrievalformula with respect to a c-Bessel mapping $g$ is satisfied if andonly if $g$ is sum of the canonical dual of $f$ with a c-Besselmapping which wea...
متن کاملLocalization operators on homogeneous spaces
Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...
متن کامل$L_{p;r} $ spaces: Cauchy Singular Integral, Hardy Classes and Riemann-Hilbert Problem in this Framework
In the present work the space $L_{p;r} $ which is continuously embedded into $L_{p} $ is introduced. The corresponding Hardy spaces of analytic functions are defined as well. Some properties of the functions from these spaces are studied. The analogs of some results in the classical theory of Hardy spaces are proved for the new spaces. It is shown that the Cauchy singular integral operator is...
متن کاملDiego Elements of Hilbert Space and Operator Theory with Application to Integral Equations
Preface These lecture notes present elements of Hilbert space and the theory of linear operators on Hilbert space, and their application to integral equations. Chapter 1 reviews vector spaces: bases, subspaces, and linear transforms. Chapter 2 covers the basics of Hilbert space. It includes the concept of Ba-nach space and Hilbert space, orthogonality, complete orthogonal bases, and Riesz repre...
متن کاملintersection theory and operators in Hilbert space
For an operator of a certain class in Hilbert space, we introduce axioms of an abstract intersection theory, which we prove to be equivalent to the Riemann Hypothesis concerning the spectrum of that operator. In particular if the nontrivial zeros of the Riemann zeta-function arise from an operator of this class, the original Riemann Hypothesis is equivalent to the existence of an abstract inter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010